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LETTER TO THE EDITOR 

On a conjecture of Hammersley and Whittington concerning 
bond percolation on subsets of the simple cubic lattice 

Geoffrey Grimmett 
School of Mathematics, University Walk, Bristol BS8 ITW, UK 

Received 15 October 1984 

Abstract. We verify the truth of a conjecture of Hammersley and Whittington concerning 
bond percolation on certain subsets of the simple cubic lattice H3. Let f and 
g be non-decreasing, non-negative functions on [0, CO) and let Z3(f; g) denote the (f; g)- 
wedge of Z3, being the set of points (x, y, z )  such that 0 s y ~ f ( x ) ,  0 s z < g(x) and x 3 0. 
We show that the condition ( I  + f ( x ) ) (  1 + g(x)) +CO as x + cc is sufficient for the critical 
probability of the bond percolation process on Z3(f; g) to be less than or equal to f. 

We consider the bond percolation process on the simple cubic lattice Z d  in d 
dimensions, in which each edge is open with probability p .  If A is a subset of E d ,  the 
critical probability a ( A )  of A is defined to be the infimum of the set of values of p 
for which A almost surely contains an infinite open cluster. It is generally impossible 
to ascertain the exact value of a ( A )  by rigorous arguments, although the standard 
machinery of series expansions and Monte Carlo techniques may be brought to bear 
on the problem in some cases of interest. We may think of a ( A )  as a measure of the 
‘effective dimensionality’ of the bond percolation process on A, by comparing a ( A )  
with the critical probabilities of the complete lattices Z“ for n = 1, 2,.  . . , d. We note 
that a(Z) = 1 and a@’) =%. 

In the case of the two-dimensional square lattice Z2, a certain amount is known 
about the critical probabilities of a particular family of subsets. Let f be a non-negative 
function on [0, CO) and let Z‘(f) be the subset of 2’ containing all points (x, y )  which 
satisfy 0 s y <f(x)  and x 3 0. 

7’heorem 1 (Grimmett 1983). If f (x )  = a  ln(x+ 1)  where OS a <CO, then the critical 
probability v(a) of Z 2 ( f )  is a function v: [0, CO) + (4, 11 with the following properties: 

v ( a )  is a continuous function of a, 
.(a) is a strictly decreasing function of a, 
v(0) = 1 and v(a) + f as a + CO. 

This theorem implies, for example, that i f f  is non-decreasing then 
(i)  Z2(f) is ‘effectively one-dimensional’ if f (x) / ln  x + 0 as x + CO, and 
(ii) Z’(f) is ‘effectively two-dimensional’ if f (x) / ln  X + C O  as X+CO.  
Hammersley and Whittington ( 1985) have discussed possible extensions of theorem 

1 to the case of three dimensions. Let f and g be non-negative functions on [0, CO) 

and let Z3(J g )  be the subset of Z3 containing all points (x, y,  z )  such that 0 s y s f ( x ) ,  
0 z S g(x)  and x 3 0. For each k = 0, 1,2,  . . . , let h( k )  be the number of pairs ( y, z )  
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such that both ( k ,  y ,  z) and ( k  + 1, y, 2 )  lie in Z’(f, g) ; that is to say, h(  k )  is the number 
of edges in the x-direction from the slice x =  k to the slice x =  k + l  in Z3(f, 8). 
Hammersley and Whittington present various results about the way in which the critical 
probability ~ ( f ,  g)  of the bond percolation process on Z’(f, g)  depends on the 
asymptotic behaviour of h ( k )  for large values of k For example, they prove that 

if h ( k )  s a In k for all large k ;  thus Z3(f,  g) is ‘effectively one-dimensional’, in the 
sense that ~ ( f ,  g) = 1, whenever h(k)/ln k +  0 as k +  CO. On the other hand, they 
conjecture that ~ ( f ,  g)  s f if h( k)/ln k + 00 as k + CO, and it is the purpose of this letter 
to show that this is true so long as f and g are non-decreasing functions. 

Theorem 2. I f f  and g are non-decreasing functions such that h ( k )  3 a In k for all 
large k and some value of a satisfying Os a < CO, then ~ ( f ,  g)  =Z v ( a ) ,  where v is the 
function given in theorem 1. 

To see that this implies the conjecture of Hammersley and Whittington, just note 
that if, for all a, h( k )  3 a In k for all large values of k, then 

~ ( f ,  g)  s lim .(a) = f. 
a-cc 

That is to say, the ‘effective dimension’ of Z3(f,  g)  is at least 2 if h(k)/ln k +  03 as 
k + a. It is likely that ~ ( f ,  g) depends on more than merely the asymptotic behaviour 
of h. 

We note finally that, if h(k)/ln k +  a as k +  00 where O <  a < CO, then the above 
results imply that 

max{ 7r(n3), 1 - e-”a> s ~ ( f ,  g) s v ( a ) ,  

where .r(Z3) is the critical probability of bond percolation on Z3. 

Proof of Theorem 2. We prove this theorem by a refinement of an argument of 
Hammersley and Whittington. We may assume that f( k )  and g( k) are non-negative 
integers for each value of k, and thus 

h ( k )  = ( 1  + f ( k ) ) ( l  +g(k) ) ,  

since f and g are non-decreasing by the hypothesis of the theorem. For k = 0, 1,2, . . . , 
we define cp(k) (respectively y(k)) to be the greatest multiple of 2 not greater than 
f( k )  (respectively g(  k ) )  ; more formally, 

cp( k )  = 2 int($( k ) ) ,  y (  k )  = 2 int(fg( k ) ) ,  

where int(x) denotes the integer part of x. Clearly ~ ( f ,  g )  =s ~ ( c p ,  y ) ,  and so it suffices 
to show that .r(cp, y )  s v ( a ) .  We define 

x (k )  = ( 1  + cp(k ) ) ( l+  Y ( k ) ) .  

We shall prove the theorem for the case when f(k) + a and g(  k )  + CO as k + CO; it 
is not difficult to adapt the proof if either f or g is bounded. 

The principal step is to use the functions cp and y to construct a path in the first 
quadrant of 2‘ which starts at the origin (0,O) and visits each vertex ( y ,  z), for y ,  z = 0, 
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1, 2 , .  . . , exactly once. We do this recursively as follows. We denote by a(-1) the 
path containing the origin (0,O) only and no edges. Having constructed a(-1),  we 
add to this path to obtain a longer path a(0)  which joins (0,O) to (cp(O), y ( 0 ) )  and 
which visits each vertex ( y ,  z )  with 0 G y ~  cp(0) and O S  ZS y(0)  exactly once and 
which visits no other vertex; we shall see in a moment how to do this. Having 
constructed a path a(  k) for some k 3 0, joining (0,O) to (cp( k), y (  k)) and visiting each 
vertex ( y ,  z )  with O S  y s cp(k), O S  z s  y(k) exactly once and no other vertex, we add 
the path sketched in figure 1 to obtain a longer path a ( k +  1) which joins (0,O) to 
(cp (k + 1 ), y(  k + 1 ) )  and which visits each vertex in the enclosed rectangle exactly once. 
This recursive step is always possible since cp(k+l)-q(k)  and y ( k + l ) - y ( k )  are 
multiples of 2. Thus we obtain a nested sequence of paths a ( -  1)  E a(0)  E a(  1) E .  . . G 
a ( k ) s  a ( k +  1 ) s . .  . . 

Figure 1. A sketch ofthe path joining (cp(k) ,  y ( k ) )  to (cp(k+ I ) ,  y ( k +  1 ) )  in the case when 
cp(  k + 1) - p ( k )  = 6 and y (  k +  1 )  - y(k) = 4. 

Next, we construct a subgraph S of Z’(cp, y )  by including all vertices of Z3(cp, y )  
but deleting certain edges. We delete from Z’(cp, y )  exactly those edges which join 
two vertices having the form (k, y ,  z ) ,  (k, y’ ,  z’)  for some k whenever ( y ,  z )  and ( y ’ ,  z ’ )  
are not joined by an edge of a (k) .  We may now ‘unroll’ this subgraph S of Z3(cp, y )  
to see that S is isomorphic to the subgraph of Z2 containing all points ( i ,  j )  satisfying 
0 s j c ,y( i) and i 2 0. However, 

x ( i )  ( l+cp(i))( l+Y(i))  
- ( 1  +f ( i ) ) ( l  +Ai)) 

f ( M i )  
( 1  +f( i ) ) ( l  + A i ) )  

L 

+ 1  as i+m, 

so that ,y( i) 2 ( a  - &)ln i for all E > 0 and all large i (depending on E ) .  Thus, by theorem 
1, we have that the critical probability of S is at most v(a), which gives in turn that 
~ ( c p ,  y )  s v(a) as required. The proof is complete. 
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